RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, MARCH 2021 FIRST YEAR [BATCH 2020-23]

 Date
 : 24/03/2021
 PHYSICS [HONOURS]

 Time
 : 11 am - 1 pm
 Paper : I [CC1]
 Full Marks : 50

Answer any five questions from the following :

1. a) Solve the following differential equation

$$y=x+atan^{-1}\frac{dy}{dx}$$

b) Solve the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$$
[3+7]

 $[5 \times 10]$

2. a) Solve the following simultaneous equations

$$\frac{dx}{dt} + 2x - 3y = 5t$$
$$\frac{dy}{dt} - 3x + 2y = 2e^{2t}$$

b) Find out the particular integral by the method of variation of parameters:

$$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + y = e^x \log x$$
[7+3]

- 3. a) Show that the given equation has a regular singularity at x=0 and an irregular singularity at $x = \infty$ $x \frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + ay = 0$
 - b) Find the basis of solutions of the following equation by the Frobenius method:

$$x^{2}\frac{d^{2}y}{dx^{2}} + 4x\frac{dy}{dx} + (x^{2} + 2)y = 0$$
[2+8]

- 4. a) Find the equation of a plane which is tangent to the surface $x^2 + y^2 z^2 = 4$ at the point (1, 2, -1).
 - b) Find the derivative of the function $\phi = x^2 2xy + z^2$ at the point (2, -1, 1) in the direction of the vector $\vec{A} = 2\hat{i} 4\hat{j} + 4\hat{k}$. [5+5]
- 5. a) Given $\vec{A} = 4xz\hat{i} y^2\hat{j} + yz\hat{k}$, evaluate $\oint A \cdot d\sigma$ for a unit cube shown below whose surface area is σ .

- b) Using the definition of Jacobian that you learned in the class, compute an expression for an elemental volume dV in spherical polar coordinates.
- c) Show that the electrostatic force F(r) between two point charges q and q' at a distance r apart is conservative. The electrostatic force is $(r) = \frac{qq'}{r^2}\hat{r}$. [5+2+3]
- 6. a) Given two set of vectors $S_1 = \{u_1, v_1\}$ and $S_2 = \{u_2, v_2, w_2\}$, where $u_1 = (40, 15)$, $v_1 = (-50, 25)$, $u_2 = (3, 4, 5)$, $v_2 = (2, 9, 2)$ and $w_2 = (4, 18, 4)$. Check whether S_1 and S_2 are linearly independent or dependent.
 - b) Given a set of vectors, $S = \{u, v\}$, where u = (1, 0, 0) and v = (0, 1, 0). Does the set of vectors S form a basis of the three dimensional space R^3 . Explain.

Consider a plane x + y + z = 5 in the three dimensional space R^3 . Is this plane a subspace of R^3 . Explain.

- c) Consider a set of vectors $\{(1,0), (1,-3), (0,1)\}$ in \mathbb{R}^2 . Are they linearly dependent or independent. Explain.
- d) Consider a vector A = (3,5) in \mathbb{R}^2 which is represented in the basis set $\{i, j\}$. [4+2+2+2]
- 7. a) Find the coordinates of A when represented in another basis set $B = \{u, v\}$ in \mathbb{R}^2 , where u = (1,1)and v = (0,2).
 - b) Consider a set of basis vectors $B = \{(1,1,1), (0,2,0), (1,0,3)\}$. Check whether the basis vectors are orthogonal, if not then derive a set of orthogonal basis vectors from the set *B*. [5+5]
- 8. a) What is Cayley Hamilton Theorem on the matrix? Using the Cayley Hamilton Theorem find the inverse of the following matrix

$$\begin{pmatrix} -4 & -2 & 2 \\ 4 & 3 & -4 \\ 0 & -2 & 1 \end{pmatrix}$$

b) Find Eigenvalues and Eigenvectors of the following matrix

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 1 \end{bmatrix}$$

[3+7]

_____ x _____